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This is a companion paper to our previous discrete Huyens' model approach to
sound wave propagation. The validity and capability of the discrete Huygens'
model or transmission-line modelling for the acoustical problems are discussed
with applied examples. The acoustical response in a room for which the
reverberation is characterized is simulated and a time-reversal approach to sound
source identi"cation and acoustic tomography technique is proposed. Some
demonstrations are presented. ( 1999 Academic Press.
1. INTRODUCTION

In our previous paper [1], we discussed the fundamental concept and the
transmission line matrix approach as a discrete Huygens' modelling. The
transmission-line matrix (TLM) modelling is an alternative to the Huygens'
modelling, in which electrical impulse scattering are traced on a transmission-line
network. In the present paper, we discuss the validity and capability of the
modelling by presenting applied examples, the "rst being the simulation of the
sound behaviour in a room. The modelling is also valid when the direction of the
time is reversed. With this nature being provided, the application is extended to the
identi"cation of the sound source location and intensity based on the measured
data observed at the locations surrounding the sources, and also to the
identi"cation of an object shape from the response data observed at the locations
surrounding it when a certain emanation is made. The work presented here has
partly been presented as a lecture (invited) at the International Symposium,
Visualization and Auralization for Acoustic Research and Education (ASVA97')
[2]. One of the authors has pointed out in a previous paper the potential of the
present approach to acoustical problems [3, 4]. Since then, however, there have been
papers few published [5, 6] along this line, to the best of the authors' knowledge.
sPresently at Nippon Telegraph and Telephone Corporation, Chugoku-branch, Hiroshima, Japan.
tPresently at Sharp Corporation, Osaka, Japan.
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Transmission-line matrix modelling was originally developed by Johns and
Beurle [7, 8] to solve electromagnetic wave problems. The method was then
extensively developed for that purpose, which was well described in the literature
[9}12]. The explanation of the process of the discrete Huygens' modelling is
possible without referring to the equivalent electrical circuit network by knowing
the equivalent pressure and the volume velocity continuity at the node in acoustical
network. Acousticians have preferred to use equivalent electrical circuit networks
for the acoustical analysis so that the use of the transmission-lines is not foreign to
them. One particular feature of the method is that the network is solved in discrete
time domain to the impulse excitation, which provides the full wave analysis.

2. SOUND REVERBERATION IN A ROOM [13]

2.1. A THREE-DIMENSIONAL TLM ELEMENT

We discussed a two-dimensional TLM element with which a minute square "eld
is equivalently replaced by a crossed pair of lines or crossed transmission lines of
short length [1]. Other short lines can also be added to this for a minute cubic space
Dv"(Dl)3 to create a three-dimensional acoustic element as shown in Figure 1. The
transmission lines are simply expressed with six arms connected at the center
instead of the four arms for the two-dimensional case. The pulses scattering at the
node are illustrated in Figure 2. The mechanism of the scattering at the node when
an impulse is entered into arm 1 (characteristic impedance Z

0
"oc) is similar to the

case of the two-dimensional modelling. To the arm 1, the remaining "ve arms are
connected at the node in parallel so that their total impedance is Z

0
/5, while the

impedance in the arm 1 is Z
0
. The re#ection coe$cient ! at the node is given by
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so that the impulse of the amplitude S1"(!2/3)P1 is re#ected back to the arm 1,
while the impulses of the amplitude 1/3P1 each goes through to the other remaining
Figure 1. A cubic element and TLM.



Figure 2. Pulse scattering at the node for a coming impulse.
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arms. It takes time Dt("Dl/c where c is the propagation speed in free space) for an
impulse to be transmitted from the end of one arm to the end of another arm. When
the impulses Pi arrive at six arms at time t"kDt (k"1, 2, 3,2 , ), the re#ected
sound pressure S1 at arm 1 at t"(k#1)Dt is given by
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The same happens for all other arms, so that the scattering matrix expression is
given by
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The pressure P
i,j

at the node is evaluated as

k
P
i,j
"

1
3

6
+
n/1

k
Pn. (4)

The "eld of interest is divided into cubic elements or meshes, in which each cube
corresponds to the above element.

The scattered pulses then become the input pulses to the adjacent elements. The
sequence of this process creates the propagation of the waves that corresponds to
the Huygens' principle, as the "eld consists of the connection of the elements
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forming a network. A wave made of a train of impulses propagates the distance
Dl"c

T
Dt for the time Dt. c

T
is the propagation velocity in the network which is

c
T
"c/J3. The process can easily be implemented on the computer.
It is sometimes required to evaluate the acoustic energy density in a certain place

in the "eld. The kinetic energy=
1

for a minute volume Dv is de"ned by
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N) is the particle velocity (vector), u

x
is the x directional

component of u and o is the medium density, and the square u2 means the
operation uTu. The potential energy is also de"ned by
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where p is the pressure and i is the volume elasticity. Therefore, the acoustic energy
in the minute volume is
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Thus, the energy density=/Dv at the instantaneous time as the wave propagates
can easily be evaluated.

2.2. WALL CONDITION AND REFLECTIONLESS BOUNDARY

On the boundary in which the wall impedance of normal incidence Z
w

is de"ned,
the re#ection coe$cient is given by
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where Z
0
"oc

T
. The corresponding condition where the re#ection is taking place

is
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To be non-re#ective for simulating outer in"nite domain, Z
w

is replaced by oc.
Therefore, the re#ectionless boundary condition is
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. (11)

2.3. REVERBERATION IN A ROOM

Using the modelling presented in the previous sections, it is easy to simulate the
physical characteristic in a room. The reverberation time is one of the most
important "gures to characterize the acoustic behaviour in a room, which is
relevant to the rate of the energy dissipation, and is de"ned by the time in which the
pressure in a room decays into 1/1000th after the sound source is terminated. The
most well-known formula for this are the ones given by Sabine [14] and Eyring
[15], which are valid under certain conditions when an ergodic state is possible and
determined depending on the volume of the room, the average absorption
coe$cient and the surface area of the wall.

Here we consider a cubic room whose volume is (50Dl)3 as shown in Figure 3,
which consists of 125,000 elements. The wall is supposed to have the average sound
absorption coe$cient aN , which is the sound absorption coe$cient averaged with
respect to the incident angle to the wall, and is one-half of the normal incident
sound absorption coe$cient (aN "1

2
a and a"1!R2, where R is the re#ection

coe$cient of the wall for normal incidence). In the present simulation, to achieve
the condition somewhat similar to being ergodic or di!used, impulses are applied
to all the elements until the energy density distribution becomes almost uniform
Figure 3. A cubic room.
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within a room before the excitation is removed and the sound energy decays. The
reverberation time is evaluated from the decay rate, that is, the exponential decay
curve, or the slope in the logarithmic scale.

Figure 4 shows an example of the decaying pressure waveform at a certain point
of the room. The decay of the energy for various wall conditions of some sound
absorption coe$cient are given in Figure 5, in which the ordinate is given in
logarithmic scale while the abscissas are measured in terms of unit Dt. The
reverberation time is obtained from their slopes, which is shown in Figure 6.
The results evaluated from the simulation is compared with the values obtained
from Sabine's and Eyring's formula. The present result agrees with Eyring's,
which is reasonable as Eyring's formula is derived from the consideration of the
multire#ections with the mean-free-path, while the energy di!usion is only
considered in the Sabine's formula. Examination is then extended to the room of
irregular shape. The results are shown in Figure 7, in which the simulated results
again agree with Eyring's. In the above simulation the sound absorption coe$cient
is assumed to be independent of the frequency. In reality, the sound absorption
Figure 5. Decaying of the energy with time.

Figure 4. Decaying sound pressure waveform (sound absorption coe$cient aN "0)1 at
(25Dl, 25Dl, 25Dl))



Figure 6. Reverberation time (a cubic room). Key:==, Eyring;**, Sabine; s, present simulation.

Figure 7. Reverberation time (an irregular room). Key: ==, Eyring; **, Sabine; s, present
simulation.

DISCRETE HUYGENS' MODEL 67
coe$cient depends on the frequency, which will be reported later in a separate
paper. As discussed in our previous paper [1], the accuracy and the computational
time required in this method are almost the same as the FD-TD method, but the
importance of the TLM modelling is that the physical phenomenon is honestly
traced on the computer while FD-TD method is the mathematical method which
solves the di!erential equation numerically. The advantage of the TLM approach
will be highlighted in the subsequent section.

3. SOURCE IDENTIFICATION [16]

3.1. PROCESS IN TIME REVERSAL

Here we start by considering a two-dimensional "eld problem, which has been
discussed in our companion paper [1]. The time-reversal process is something like
operating a movie "lm in reverse direction in which the waves propagating
outwards from a source again go back to the original source point. This mechanism
could be used for source identi"cation problems. The scattering matrix for
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a two-dimensional TLM element is
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Multiplying [A]~1 on both sides, we have
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since

[A]~1"[A]. (15)

This is the time-reversal process. It is interesting to note that the algorithm is
exactly the same for both the forward and the backward process. This mechanism is
depicted in Figure 8 for the scattering and concentration in terms of energy. The
time-reversal process is also valid for three-dimensional scattering matrix
expression. It is easy to perform the time-reversal operation as the TLM method is
a physical model. For electromagnetic problems inverse source and inverse
scattering problems have been discussed [17].

Noise source identi"cation where the noises come from is of practical importance
for noise diagnosis. In the following we discuss an approach to this issue.

3.2. SOUND SOURCE IDENTIFICATION*TWO-DIMENSIONAL FIELD

3.2.1. The case when sound source plane is known
Here we are to identify the sound source "eld distribution over a certain source

plane from the observed data collected over a surface remote from the source plane.
Figure 8. Scattering and concentration in a two-dimensional element (energy). (a) Incident and
radiated impulses; (b) time-reversed impulses.



DISCRETE HUYGENS' MODEL 69
We take a two-dimensional acoustic "eld as shown in Figure 9. To simulate the free
space, non-re#ective boundary is created over the boundary that surrounds the
"eld of interest. The data or waveforms are observed or recorded along the surface
shown in the "gure, from which the sound source distribution is to be recovered
through the inverse propagation process. In the present simulation, the solution of
the forward problem obtained for the excitation at the sound source location is
used for &&the observation data''. The sound source is set along the line x"2, whose
amplitude distribution is assumed to be Gaussian and rectangular. The excitation is
a train of 64 impulses with a period of sine wave envelope, for which the data are
recorded at each possible position Dl apart along the observation surface. The
sound source parameters are tabulated in Table 1. The observed waveforms are
then used as the excitation with the time reversed and back propagation is made.
The waves are to go back to the original location. The results are observed over the
plane x"2. The waveforms are transformed into frequency domain through FFT.
The amplitude distribution is obtained for each frequency spectrum. Figure 10
shows the identi"ed results, which are compared with the original sources. Next
is the case of plural sources with two di!erent frequencies. The source distribution
is as shown in Figure 11(a), consisting of two frequencies. The sound sources
used are tabulated in Table 2. The simulation procedure is the same as in the
previous example in which the responses recorded over the boundary in the
forward solution are used as the excitation sources. The identi"ed source
TABLE 1
Sound sources

Distribution Wavelength Source width

Rectangular 8Dl 64Dl (8j)
Gaussian 8Dl 48Dl (6j)

Figure 9. Two-dimensional acoustic "eld.



Figure 10. Sound source distributions identi"ed. (a) Rectangular source, (b) Gaussian source.
Key: - - -, original; **, reconstructed.
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distributions are, respectively, given in (b) and (c). In the above simulation, data
used for the inversion are obtained at locations separated by Dl("j/8). The cases
with a smaller number of observation points are examined. The cases where
observation points are taken as far as j/4, j/2, j and 2j apart are considered. The
results identi"ed are given in Figure 12, in which the identi"cation de"nitely fails
when the interval is wider than the wavelength.

3.2.2. ¹he case when the sound source plane is unknown

Here we discuss the case of point sources, as the distributed source consists of
point sources. The two-dimensional acoustic "eld to be considered here is shown in
Figure 13, in which the observation is made of all surfaces around the sound
sources. The responses for the forward propagation are again used for the sources
for the reverse propagation. The power (the square of the sound pressure,
time-averaged) at each node is taken over the space. First we consider the case of
a single point source made of impulse train in which one is the continuous sine
wave (18 periods) and the other is a period of the sine wave. The sources used are
tabulated in Table 3. The time-averaged power distributions are shown in Figure
14. The position identi"ed meet the original one. Second, the case of the two point



Figure 11. Sound source distributions identi"ed. (a) Original source distribution; (b) rectangular
source; (c) Gaussian source. Key: - - -, original; **, reconstructed.

TABLE 2
Sound sources

Distribution Wavelength Source width

Rectangular 8Dl 32Dl (4j)
Gaussian 16Dl 32Dl (2j)
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Figure 12. Identi"ed results for di!erent observation point intervals. Key:* )*, original. Recon-
structed: ==, j/8; **, j/4; ) ) ) ). j/2; } } }, j; - - - -, 2j.

Figure 13. Two-dimensional acoustic "eld.

TABLE 3
Sound sources

Excitation Wavelength Source position Duration

Continuous wave 8Dl (30, 40) 0¹&18¹
A period of sine wave 8Dl (30, 40) 3¹&4¹

Note: ¹ : period ("j/c)
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sources with di!erent frequencies is considered. The acoustic "eld to be considered
is the same as shown in Figure 13. The sources are tabulated in Table 4. The
identi"ed results are depicted in Figure 15. For both cases, the two source positions
are well identi"ed.



Figure 14. A point source identi"ed.

TABLE 4
Sound sources

Excitation Wavelength Source position Duration

Continuous wave (1) 8Dl (30, 40) 0¹
1
&18¹

1(2) 12Dl (90, 90) 0¹
2
&12¹

2
A period of sine wave (1) 8Dl (30, 40) 3¹

1
&4¹

1(2) 12Dl (90, 90) 3¹
2
&4¹

2

Note: ¹
i
: period of source (i)

Figure 15. Two point sources identi"ed.
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3.3. SOUND SOURCE IDENTIFICATION*A THREE DIMENSIONAL FIELD

Here we consider the source identi"cation in a three-dimensional "eld. The
scattering matrix expression is also valid in time reversal as discussed.
The scattering of an impulse and the concentration of the re#ected pulses in time
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reversal are illustrated for the pressure in Figure 16. For the identi"cation
simulation, we take the three-dimensional "eld as shown in Figure 17, in which the
boundary is treated as re#ectionless to simulate an unbounded "eld, and the
observation points are provided there. Two-point sources are again considered.
The source condition is tabulated in Table 5. Sources are assumed to be on the
plane x"x

0
. The observed data are again used as the sources for the back

propagation. The time-averaged square of the pressure is evaluated at every node.
The results identi"ed are depicted in Figure 18. The identi"cation is again properly
made.
Figure 17. A three-dimensional acoustic "eld.

Figure 16. The scattering of a pulse and the concentration of the scattered pulses (in a three-
dimensional element).



TABLE 5
Sound sources

Excitation Wavelength Source position Duration

Continuous wave (1) 8Dl (2, 10, 10) 0¹
1
&18¹

1(2) 12Dl (2, 35, 35) 0¹
2
&12¹

2
A period of sine wave (1) 8Dl (2, 10, 10) 3¹

1
&4¹

1(2) 12Dl (2, 35, 35) 3¹
2
&4¹

2

Figure 18. The point sources identi"ed (x"x
0
).
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4. SCATTERING TOMOGRAPHY IN TIME REVERSAL [18]

4.1. PRINCIPLE

Here we again consider a two-dimensional "eld modelling. In the previous
examination, we "nd that when the measured responses are used as the input
they come back to the original source point in the TLM "eld with a time-reversal
process. When an object is illuminated by a certain wave, scattering occurs
at the object boundary of di!erent impedance which can be the origin of
secondary wave sources. Therefore, a similar process to the one in the source
identi"cation described above is practiced with the emanation wave provided.
The measured data used as the input in the time reversal process go back to
the secondary sources, which leads to the visualization of the object. This
is the mechanism of the scattering tomography in time reversal. It is sometimes
required to remove the e!ect of the primary source to ensure a better S/N
ratio.
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4.2. THE PROCEDURE AND THE EXAMPLE

To prove the principle of the approach proposed, the demonstration is presented
here. The simulation consists of the following "ve steps.

1. Forward propagation: Instead of obtaining &&the measured data'' the scattered
data over the region boundary are obtained for the simulation purpose.

2. Forward propagation: Data over the region boundary are obtained when no
object is placed in the vacant TLM "eld for collecting the reference data.

3. Back propagation: The &&measured data'' that is obtained by the simulation in
Step 1 are used as the input and the responses are observed at every node in
the "eld. The time-averaged energy density distribution is calculated for each
node in the space.

4. Back propagation: The reference data obtained in Step 2 are used as the input
to calculate the time-averaged energy density distribution in the vacant "eld.

5. Object reconstruction: Substraction of the energy density distribution in Step
4 from the energy distribution in Step 3 visualizes the object boundary.

As in many of the computed tomography, we consider here a two-dimensional "eld
for the cross-section of the object. Figure 19 shows the object whose density is 10%
higher than the ambient medium. The area under consideration is (100Dl )2. Figure
20 (a) shows the reconstructed image or time-averaged power distribution
di!erence when a single Gaussian wave (e!ective wavelength 8Dl) is used for
Figure 20. Reconstructed. (a) One-point excitation; (b) one-point but spatially swept excitation.

Figure 19. Original object.
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excitation. The image quality increases when the "gures obtained for di!erent
excitation positions are superposed, as shown in Figure 20(b). The observation or
measurement is made at every Dl interval along the absorbing boundary. If the
observation points are separated at intervals greater than the wavelength, the
quality of the reconstructed image may deteriorate. For reasonable reconstruction,
signal-to-noise ratio more than 60 dB is required for a single excitation.

5. CONCLUDING REMARKS

The potential of the application of the discrete Huygens' modelling or the
transmission-line matrix modelling to some acoustical problems have been
considered and demonstrated. The acoustical response in a room for which the
reverberation is characterized, and a novel approach to sound source identi"cation
and acoustic tomography technique in time reversal have been proposed. The
validity and capability are discussed with simulated examples. The discussion can
be extended to sound absorbing material or a "eld made of lossy medium with
arbitary propagation velocity. These problems will be reported in a separate paper
to follow.
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